
Support of Asynchrony in Sensor Web

Liping Di, Genong (Eugene) Yu, Nengcheng Chen, Min Min, and Huilin Wang
Center for Spatial Information Science and Systems

George Mason University

6301 Ivy Lane, Suite 620

Greenbelt, MD 20770

Abstract- Sensor Web is a system of systems, of which each

system consist of live sensor, data, and geospatial processing
services. In a broad sense, it includes archived data, and on-
demand generated data or virtual sensor. In such a system,
asynchrony cannot be avoided because of differences in
clock/time and the long processing time of complex processes.
Asynchrony can occur at the sensor planning stage, the data
collection phase, or in the data processing process. Support of
asynchrony is one of the core characteristics of the Coordination
and Event Notification Services (CENS), the central component
of the Self-Adaptive Earth Predictive System (SEPS) that
operates Sensor Webs. This paper reviews the different types of
asynchrony in the Sensor Web system and their technical
solutions. Technologies in industry to support asynchronous
mechanisms can be roughly grouped into two major categories:
message queuing and publish-subscribe. Representative
technologies include Web Services Addressing (WS-Addressing)
for message queuing and the Extensible Messaging and Presence
Protocol (XMPP) for publication-subscription. In emerging
geospatial standards, the Web Notification Service (WNS) and
the Sensor Alert Service (SAS) are designed to deal with
asynchronies at message queuing pattern and publish-subscribe
pattern correspondingly. There are generally two approaches in
coordinating collaborative work by systems of systems. They are
orchestration and choreography. Orchestration has a central
director to guide the execution of each step such as a workflow.
Choreography is a bottom-up approach, in which coordination
is achieved by defining each individual web service/resource. In
this project, orchestration is used. Business Process Execution
Language is adopted as the script language to describe the
composite processes. No matter which approach is chosen, a
complex composite process involves syndication of all services
and data as the final outcome. The syndication introduces
problems similar to those, such as deadlock and reachability,
encountered when trying to synchronize asynchronous threads
in multi-thread programming. To solve these problems, proper
methods for handling asynchrony in the Sensor Web system are
crucial. With the acceptance of the Representation State
Transfer (REST), the new style for Web Service, a new
paradigm, called Resource Oriented Architecture (ROA), has
emerged for interoperation in the Web environment. ROA is
different from Service Oriented Architecture (SOA) in many
aspects. Mechanisms for supporting asynchrony, e.g.
HTTPEvents, are also emerging. Workflow standards
specifically dealing with RESTful services, e.g. WfXML are
emerging as well. Asynchronous prototypes for both resource-
focused and service-focused workflows have been examined and
demonstrated in two scenarios in this project. One is a wild fire
workflow and another is the georeferencing workflow. Open
research issues are also pointed out, especially those to be
studied in the emerging Web 3.0.

I. INTRODUCTION

Sensor Web is a system of systems. Each system consists of live
sensor, data, and geospatial processing services. “A sensor web is a
group of interoperable web services which all comply with a

specific set of sensor behaviors and interfaces specifications”[1].
The definition of Sensor Web embraces not only observations
directly acquired from physical sensors, but also derived products
and historical data archives. Derived products can be computed on-
demand and online through a series of Web services or processing
services accessing real observations of sensors. These derived
products can be called virtual geospatial products[2]. Integration and
aggregation of component Web services in a loosely coupled Web
environment form the crucial part of such a system. Geospatial
products can be generated on-demand and customized to the
requirements of users[2].

In the Sensor Web, asynchrony is required to allow the
completion of long processing and the waiting of future
observations. Asynchrony can occur at the sensor planning stage,
the data collection phase, or in the data processing process. The
following summarizes some of the typical properties of sensor Web
systems.

(1) Observations required for assimilation and fusion of sensor
data can be delayed [3]. For sensor Web, the observations
may be available and planned for the future. It is not possible
to let the Web service wait for days, weeks, or even months.

(2) Sensors in Sensor Web, no matter on board of satellite,
aircraft, or in-situ, are mostly asynchronously event-driven
systems[4]. Energy-awareness Sensor Web also requires
asynchrony due to the delay of sensor hibernation period[5,
6]. The limited energy budget of sensors requires wireless
sensors to have sleep and wake cycles.

(3) Virtual sensors, or models computed from geospatial
resources and products may require Web services with long
processing times.[7]. These geospatial Web Services may
be asynchronous themselves to the non-blocking invocation
from clients. The integrated services must be asynchronous.

In this project, asynchrony in the context of the Sensor Web has
been studied. A general framework, Coordination and Event
Notification Services (CENS), was developed to support different
asynchronies for Sensor Web.

This paper is organized as follows. In Section II, asynchronous
technologies for both geospatial Web services and other applications
are reviewed. In Section III, CENS is introduced to harmonize the
process of synchronous service. In Section IV, special handling
techniques for integration of geospatial Web services and Sensor
Web are studied. In Section V, two cases for applying the
asynchronous framework and workflow are discussed. Finally,
conclusions are presented and future research directions are
described.

II. ASYNCHRONOUS TECHNOLOGIES

A. Asynchrony in Web Services

Web Services are computer software programs available on
the Web. Most Web Services support synchronized access
only. However, industrial applications did prompt the study
of asynchrony since the default 60 second time-out for Web
Services is not long enough for most processing algorithms.
Client programs cannot wait longer than minutes for the
server to respond in many cases.

1. Implementations and standards

Different strategies and technologies have been developed
to support asynchrony. There are mainly two types of
developments to support asynchronous Web services. One is
asynchrony support at the transport level, for example, Java
Message Service (JMS), Web Service Invocation Framework
(WSIF), Java API for XML Messaging (JAXM), and Reliable
HTTP (HTTPR)[8]. For implementing asynchronous Web
services, Microsoft .NET and JAX-WS (Java API for XML
Web Services) are two major commercial technologies.

Another strategy to support asynchrony is by developing
standards or protocols. These may be realized through open
frameworks, e.g. RosettaNet for industrial applications, IHE
(Integrating the Healthcare Enterprise) for health study, and
xCBL (XML Common Business Library) and ebXML
(Electronic Business using eXtensible Markup Language) for
business[8]. For Grid Web Services, OGSA (Open Grid
Services Architecture) has developed support of asynchrony
in its framework.

A Web Service, in its narrow definition of W3C, is a
program that passes message through the Simple Object
Access Protocol (SOAP), describes itself using the Web
Service Description Language (WSDL), and advertises itself
in a Universal Description Discovery and Integration
(UDDI)[9]. To support asynchrony with the existing Web
Service technology, especially SOAP, OASIS developed the
Asynchronous Service Access Protocol (ASAP)[10]. ASAP
was evolved from Internet Engineering Task Force (IETF)
draft Simple Workflow Access Protocol (SWAP) that aims at
providing a generic asynchronous service to create its
instance, monitor its status, control its process, and notify its
completion[10, 11]. ASAP also supersedes the
Asynchronous Web Services Protocol (AWSP), which aims
at solving the Web Service asynchrony problem through the
use of SOAP[10, 12]. ASAP allows the creation of a generic
asynchronous service instance, monitoring of its progress,
and control of its execution[10].

REST (Representation State Transfer) is a “more
constrained architectural style” [9] for Web applications. It
has gained popularity because of its simplicity. W3C
recognizes its existence and supports creation of REST Web
services at both the message (e.g. SOAP 1.2) and description
(e.g. WSDL 2.0) levels. To support and accommodate
asynchrony in REST Web services, WfXML (XML Based
Protocol for Run-Time Integration of Process Engines) was
developed on top of ASAP to enable creation and monitoring
of asynchronous instances[8, 13].

2. Asynchrony patterns

Asynchronies can be categorized into different groups
depending on their invocation patterns. Several have
reviewed and pointed out different existing patterns for
asynchronous Web Services[14, 15].[16] Given that Sensor
Web has been operated and developed mostly under service-
oriented architecture, these asynchronous patterns are
applicable to Sensor Web services.

Asynchronies can be handled at the client-side or at the
server-side[17]. At the client side, two approaches, a
nonblocking Application Programming Interface (API) and
transport level, can be used[17]. The nonblocking API
approach relies on a client side proxy service to deal with
long server processing times. The transport level approach
sends the request using one transport channel and receives the
response using a different channel. At the server side, WS-
Addressing can be used to handle asynchrony.

Client asynchrony patterns can include fire and forget, sync
with server, poll object, and result callback[8, 14]. They can
also use message queues[16, 18]. Based on their interaction
patterns, asynchronies can be classified into Callback pattern,
Publish/subscribe pattern, Polling pattern, Callback Factory
Pattern, and Publish/Subscribe Factory Pattern[15]. For
callback, two protocols can be adopted: WS-Callback[19] and
WS-Addressing[20]. Details of these patterns are beyond the
scope of this paper and can be found in [14-16, 18].

The Callback pattern is of special relevance to the Sensor
Web since it frees the client from the heavy network traffic of
polling between client proxy and server. Callback is the most
widely supported pattern by industrial protocols, for example
RosettaNet, xCBL, ebXML, IHE, and OGSA[15]. ASAP
supports only the Callback Factory pattern. WS-Addressing is
used for asynchronous SOAP geospatial Web services. The
Publish/subscribe pattern is used in this system because it
allows information to be distributed to a group of
partners[15]. Publish/subscribe pattern is supported by
ebXML and OGSA[15]. In this study, the ebXML protocol
will be adopted and Extensible Messaging and Presence
Protocol (XMPP) channel will be used to transmit the
message for the Publish/subscribe pattern in Sensor Web[21].

B. Geospatial Web Services

Open Geospatial Consortium Sensor Web Enablement
(OGC SWE) has developed a suite of specifications to enable
“real time integration of heterogeneous sensor webs into the
information infrastructure”[22]. Seven specifications have
been developed under the OGC SWE: Observations &
Measurements (O&M), Sensor Model Language (SensorML),
Transducer Model Language (TransducerML), Sensor
Observations Service (SOS), Sensor Planning Service (SPS),
Sensor Alert Service (SAS), and Web Notification Service
(WNS). O&M is the encoding schema for observations and
measurements from sensors[23, 24]. SensorML encodes the
descriptions for sensors and processes[25]. TransducerML is
for encoding and streaming transducer data[26]. SOS is a
service for managing observation data from sensors[27]. SPS
is a service for sensor discovery and observation
planning[28].

Asynchrony in the geospatial Sensor Web is supported by
one specification, SAS, and one best practice, WNS. SAS
allows the event notification through XMPP channel

publication (from the provider) and subscription (from the
client)[29]. WNS is specifically designed to asynchronously
deliver alerts/notifications from SAS and SPS[30].

III. CENS

In this project, WNS and SAS were used as the core foundation to
support asynchrony for coordinating and harmonizing
heterogeneous sensor webs and virtual sensors. A message
notification approach was used to keep the final processes
synchronized to complete complicated and/or lengthy geospatial
processing workflows. Figure 1 shows the general framework for
asynchronous process coordination and notification. CENS is the
core of the large framework in developing SEPS (Self-Adaptive
Earth Predictive Systems)[1]. Corresponding Web services will be
notified of changes of state through multiple transport protocols, e.g.
HTTP, email, telephone, and fax . Other modules of SEPS—Data
Preprocessing, Integration, and Assimilation Services (PIAS), Data
Discovery and Retrieval Services (DDRS), and Data and Sensor
Planning Services (DSPS)—can be monitored and controlled using
the asynchrony-enabled coordination system for discovering,
downloading, and processing geospatial data and products.

Figure 1. Architecture of CENS

IV. SERVICE INTEGRATION

From sensor observations to model input, the process is not
trivial. Integration through re-use of geospatial Web services is one
way to increase the efficiency of preparing and pre-processing raw
observations for model input. To automate or assist the process of
service integration, two approaches may be used – orchestration
(top-down) and choreography (bottom-up). Orchestration has a
central director to guide the execution of each step such as a
workflow. Choreography is a bottom-up approach in which
coordination is achieved by defining each individual Web
service/resource. In this project, orchestration is used and Business
Process Execution Language (BPEL) is adopted as the script
language to describe the composite processes.

 Support for asynchrony in workflows, requires the
asynchronous invocation of individual Web services and the
description of the workflow as an asynchronous Web service.
WS-Addressing is one approach for supporting callback if a
SOAP message is passed between web services. If the Web
service uses WS-Addressing, the BPEL engine generates a

proxy callback service to receive the response. Correlation
between different services is established by using unique
message identification in the WS-Addressing message ID.

V. ASYNCHRONOUS CASES

The CENS framework has been successfully applied in
several cases. Here two scenarios are discussed: enabling the
retrieving of subscription-based data and a live sensor
planning system.

A. Asynchronous access to data order system
Geostationary Operational Environmental Satellites

(GOES) data were required for weather prediction. They can
be ordered from the Comprehensive Large Array-data
Stewardship System (CLASS) of NOA. However, the NOAA
CLASS is an order system. It requires user to submit a
request through their Web pages and wait for an email
notification before the data can be downloaded. This waiting
period can vary, from half hour to hours. This cannot be done
automatically using synchronous processing
services/programs.

Figure 2. Asynchronous access to subscription-based

archived sensor observations

Figure 2 shows the solution using the CENS framework. A
parser was developed to parse the metadata through their
NOAA CLASS and populate the data availability in the
capability description files of WCS (Web Coverage Service).
An adapter is used to monitor a given subscriber email
account and generate a WNS notification message. When a
user or a program requests the virtual data through the WCS,
the WCS identifies the data is not actually hosted or cached
locally. It sends out an order request to NOAA CLASS. The
workflow is suspended. It waits for an email notification of
processing status from the adapter service. Once the email
notification is received, the downloading starts and the user
or program is notified by WNS on the availability of data. By
doing so, the network traffic load is reduced by queuing
process events asynchronously.

B. Georeferencing
The Georeferencing case is a demonstration carried out in

the OWS-5 of OGC interoperability campaign. This project
implemented the workflow using standard BPEL and several

Web services: Web Processing Service (WPS), Sensor
Observation Service (SOS),Sensor Alert Service
(SAS),Sensor Planning Service (SPS), Web Coverage
Service with enhancement of transaction capabilities (WCS-
T),Jpeg Image Server (JPIP), and Catalog Service—Web
Profile (CS/W) were chained together to plan geospatial data
requests, retrieval, geo-referencing, and alerting. It was an
international collaboration. The self-developed BPEL engine
was used in executing the final Web service chain. Figure 3
shows the final workflow as displayed using the standard
BPEL designer. In the case of designing the service chain, an
Oracle BPEL designer was used to design the workflow.

Figure 3. BPEL workflow for geo-referencing from sensor

observations

The workflow can be briefly described as: a user or a
program submit planning request to the SPS. When an email
notification is received on the confirmed acquisition of data,
observation is retrieved from the SOS. It is then fed into the
JPIP server through a secure transaction. The sensor
description and the JPIP data are added to the WCS through
its transaction operation. The data availability is made known
through SAS to all subscribed users.

In this process, two types of asynchronies were used. One
is for the first step of SPS based on WNS. Another is the final
notification of data availability to all subscribed users through
SAS. The first can be done through a WS-Addressing
addition in the SOAP header part if the SOAP message
protocol is adopted. It is a callback pattern asynchrony. The
second one is a publish/subscribe pattern. Both were
supported in the CENS through its core component BPEL
engine.

VI. CONCLUSIONS

The asynchronous support in the SEPS has been made
available through its core sub-system, CENS. BPEL is
adopted as the core script language. An OGC-aware BPEL
engine formed the core of the CENS. The framework and
concepts of asynchrony for Sensor Web were applied in two
scenarios. From the experiments, it can be observed that
asynchrony cannot be avoided in Sensor Web, due to future

observation planning and long processing time. Proper use of
asynchrony would reduce the network traffic in some extent.

The CENS is at an early stage. Support for full OGC-
specific asynchrony has not been completely studied and
implemented. Performance evaluation should be quantitative.
Simulation network systems may be used to assist on the
experiments and analyses.

ACKNOWLEDGMENT

This study is funded by NASA AIST program (Grant #
NNX06AG04G, PI: Dr. Liping Di). For the OWS-5
demonstration case, many helps had been received from
many parties, including Mr. Shayne Urbanowski, Mr.
Alexandre Robin, Mr. Peter Giacovelli, Mr. Steven Keens,
Mr. Johannes Echterhoff, Mr. Max Martinez, Dr. Arne
Broering, Dr. Peisheng Zhao, Dr. Yaxing Wei, and Dr.
Weiguo Han.

REFERENCES

[1] L. Di, "Geospatial Sensor Web and Self-adaptive

Earth Predictive Systems (SEPS)," in ESTO/AIST

Sensor Web PI Meeting, Febrary 13-14, 2007 San

Diego, California, USA, 2006.

[2] L. Di, "Customizable Virtual Geospatial Products at

Web/Grid Service Environment," in IEEE

International Geoscience and Remote Sensing

Symposium (IGARSS '05). Proceedings, Seoul,

South Korea, 2005, pp. 4215- 4218.

[3] J. A. López-Orozco, J. M. d. l. Cruz, E. Besada, and

P. Ruipérez, "An Asynchronous, Robust, and

Distributed Multisensor Fusion System for Mobile

Robots," The International Journal of Robotics

Research, vol. 19, pp. 914-932, 2000.

[4] M. Yu, H. Mokhtar, and M. Merabti, "A Survey of

Network Management Architecture in Wireless

Sensor Network," in The convergence of

telecommunications, networking and broadcasting,

26-27 June 2006, Liverpool, England, UK, 2006.

[5] C. I. Kelly, V. Ekanayake, and R. Manohar, "SNAP:

A Sensor-Network Asynchronous Processor," in

Proceedings of the Ninth International Symposium

on Asynchronous Circuits and Systems (ASYNC’03),

2003.

[6] H. S. Kim, T. F. Abdelzaher, and W. H. Kwon,

"Minimum-Energy Asynchronous Dissemination to

Mobile Sinks in Wireless Sensor Networks," in

ACM SenSys, Los Angeles, California, USA, 2003.

[7] A. Joshi, "Active Web Alert Service for Rule Based

Alerting in Sensor Web: An Event Based

Approach." vol. M.S. Enschede, The Netherlands:

International Insitute for Geo-Information Science

and Earth Observation, 2005, p. 128.

[8] U. Zdun, M. Voelter, and M. Kircher, "Design and

Implementation of an Asynchronous Invocation

Framework forWeb Services," in Web Services -

ICWS-Europe 2003 (International Conference

ICWS-Europe 2003 Erfurt, Germany, September 23-

24, 2003 Proceedings). vol. 2853/2003, M. Jeckle

and L.-J. Zhang, Eds.: Springer Berlin / Heidelberg,

2003, pp. 64-78.

[9] D. Booth, H. Haas, F. McCabe, E. Newcomer, M.

Champion, C. Ferris, and D. Orchard, "Web

Services Architecture," W3C, 2004.

[10] J. Fuller, M. Krishnan, K. Swenson, and J. Ricker,

"Asynchronous Service Access Protocol (ASAP)

Version 1.0 (wd-asap-spec-02f)," OASIS, 2006, p.

46.

[11] K. Swenson, "Simple Workflow Access Protocol

(SWAP), IETF draft-swenson-swap-prot-00," IETF,

1998.

[12] K. Swenson and J. Ricker, "AWSP Asynchronous

Web Services Protocol," 2002, p. 41.

[13] M. z. Muehlen, J. V. Nickerson, and K. D. Swenson,

"Developing web services choreography standards—

the case of REST vs. SOAP," Decision Support

Systems, vol. 40, pp. 9-29, 2005.

[14] M. Voelter, M. Kircher, U. Zdun, and M.

Englbrecht, "Patterns for Asynchronous Invocations

in Distributed Object Frameworks," in The 8th

European Conference on Pattern Languages of

Programs (EuroPlop 2003), June 2003, Irsee,

Germany, 2003, pp. 269-284.

[15] M. Brambilla, G. Guglielmetti, and C. Tziviskou,

"Asynchronous Web Services Communication

Patterns in Business Protocols (Proceedings of 6th

International Conference on Web Information

Systems Engineering, New York, NY, USA,

November 20-22, 2005)," in Web Information

Systems Engineering – WISE 2005. vol. 3806/2005,

A. H. H. Ngu, M. Kitsuregawa, E. J. Neuhold, J.-Y.

Chung, and Q. Z. Sheng, Eds.: Springer Berlin /

Heidelberg, 2005, pp. 435-442.

[16] U. Zdun, M. Voelter, and M. Kircher, "Pattern-

Based Design of an Asynchronous Invocation

Framework for Web Services," International

Journal of Web Service Research, vol. 1, pp. 1-14,

2004.

[17] E. Chinthaka, "Develop asynchronous Web services

with Axis2,"

http://www.ibm.com/developerworks/library/ws-

axis2/index.html: IBM, 2007.

[18] M. Voelter, M. Kircher, and U. Zdun, Remoting

Patterns: Foundations of Enterprise, Internet and

Realtime Distributed Object Middleware: Wiley,

2004.

[19] Y. Goland, M. Nottingham, and D. Orchard, "WS-

CallBack Protocol (WS-CallBack) 0.91," BEA

Systems Inc, 2003.

[20] D. Box, E. Christensen, F. Curbera, D. Ferguson, J.

Frey, M. Hadley, C. Kaler, D. Langworthy, F.

Leymann, B. Lovering, S. Lucco, S. Millet, N.

Mukhi, M. Nottingham, D. Orchard, J. Shewchuk,

E. Sindambiwe, T. Storey, S. Weerawarana, and S.

Winkler, Web Services Addressing (WS-

Addressing): W3C, 2004.

[21] XMPP, "XMPP Protocols,"

http://www.xmpp.org/protocols/: XMPP, 2008.

[22] OGC, "Sensor Web Enablement WG." vol. 2008:

Open Geospatial Consortium, 2008.

[23] S. Cox, "Observations and Measurements – Part 1 -

Observation schema," OGC 07-022r1 ed: Open

Geospatial Consortium, 2007, p. 85.

[24] S. Cox, "Observations and Measurements – Part 2 -

Observation schema," OGC 07-002r3 ed: Open

Geospatial Consortium, 2007, p. 46.

[25] M. Botts and A. Robin, "OpenGIS® Sensor Model

Language (SensorML) Implementation

Specification," OGC 07-000 ed: Open Geospatial

Consortium, 2007, p. 180.

[26] S. Havens, "OpenGIS® Transducer Markup

Language (TML) Implementation Specification,"

OGC 06-010r6 ed: Open Geospatial Consortium,

2007, p. 258.

[27] A. Na and M. Priest, "OpenGIS® Sensor

Observation Service Implementation Specification,"

OGC 06-009r1 ed: Open Geospatial Consortium,

2006, p. 91.

[28] I. Simonis and P. C. Dibner, "OpenGIS® Sensor

Planning Service Implementation Specification,"

OGC 07-014r3 ed: Open Geospatial Consortium,

2007, p. 186.

[29] I. Simonis and J. Echterhoff, "OGC® Sensor Alert

Service Implementation Specification," OGC 06-

028r5 ed: Open Geospatial Consortium, 2007, p.

144.

[30] I. Simonis and A. Wytzisk, "Draft OpenGIS® Web

Notification Service Implementation Specification,"

OGC 06-095 ed, 2003, p. 64.

